## **Table of Contents**

| 4.0   | Table of Contents                                                                      |
|-------|----------------------------------------------------------------------------------------|
| 4.1   | System description                                                                     |
| 4.100 | System description (general)                                                           |
| 4.105 | System description (data)                                                              |
| 4.115 | CASAFLEX UNO range, heating, 16 to 25 bar                                              |
| 4.120 | CASAFLEX DUO range, heating, 16 bar                                                    |
| 4.2   | Planning, design engineering                                                           |
| 4.200 | Pressure loss chart                                                                    |
| 4.210 | Heat loss                                                                              |
| 4.3   | Components                                                                             |
| 4.300 | T-joint                                                                                |
| 4.310 | Flex-T-branch 45°, branch - main pipe, plastic casing pipe                             |
| 4.315 | Flex-T-branch 45°, with and without tapping cock                                       |
| 4.320 | Y-branch pipe Type G (straight)                                                        |
| 4.321 | Y-branch pipe CASAFLEX DUO                                                             |
| 4.325 | Joint                                                                                  |
| 4.330 | Connector, CASAFLEX UNO, DN 20 - DN 80 (PN 16)                                         |
| 4.335 | Connector, CASAFLEX UNO, DN 20 - DN 50 (PN 25)                                         |
| 4.340 | Connector, CASAFLEX UNO, DN 65 - DN 80 (PN 25)                                         |
| 4.345 | Connector, CASAFLEX UNO, DN 100 (PN 16)                                                |
| 4.350 | Connector, CASAFLEX DUO, DN 20 - DN 50 (PN 16)                                         |
| 4.355 | Accessories: PUR foam containers, pipe warning tape                                    |
| 4.360 | Wall seal for wall openings                                                            |
| 4.365 | Ring seal for core bore / fiber cement liner pipe – impermeable to pressure from water |
| 4.5   | Underground construction, installation                                                 |
| 4.500 | Pipe routing                                                                           |
| 4.505 | Trench dimensions                                                                      |
| 4.510 | Connection (rigid/flexible): CASAFLEX – plastic casing pipe                            |
| 4.515 | Entry into building: Fixed-point forces                                                |
| 4.520 | Entry into building: Wall opening                                                      |
| 4.525 | Entry into building: Core bore                                                         |
| 4.530 | Shaft structures: Entry into building                                                  |
| 4.535 | Construction work: Open trench lengths                                                 |
| 4.540 | Open installation                                                                      |



## **System description**

#### 1. General

CASAFLEX district heating pipe is the registered trade name for a flexible house connection pipe from BRUGG Pipe Systems. It is ideal for use in small and midsize district and local heating networks, in industrial and agricultural applications and in solar collector plants and swimming pool installations.

CASAFLEX district heating pipe has a corrugated carrier pipe made of stainless steel. The design of the corrugated pipe takes account of factors related to fluid dynamics.

The thermal insulation is positioned below the PE-LD casing pipe and consists of a CFC-free, flexible PIR rigid foam (polyisocyanurate foam) with excellent heat insulation properties; a barrier film to impede diffusion of the cellular gases.

The bending capability of CASAFLEX district heating pipe ensures easy adaptation to virtually all pipe routing conditions. It is possible to pass over or under existing supply pipes, and obstacles are easily bypassed.

With CASAFLEX district heating pipe, users can choose the shortest pipe route without considering the classical method of pipe construction.

CASAFLEX district heating pipe is delivered to the site in coils or on drums in the required lengths. The pipe can generally be laid in the ground without joints. This means that the pipe trench can be considerably narrower. This in turn allows considerable savings on underground work, When one considers the very short time required for installation, CASAFLEX district heating pipe is not only a technically perfect solution but also the key to saving time and expense when setting up district heating networks. Less coordination is required on site and the pipes are laid simply and quickly.

The physical characteristics of the corrugated carrier pipe enable it to be laid without having to consider thermal expansion.

Fitting the connectors is a very simple procedure. The connections are fitted quickly and securely with simple components.

#### 2. Range of use

Max. temp. for continuous operation  $T_{Bmax}$  160 °C\* Max. permitted

operating temp. T<sub>max</sub>
Max. permitted

180 °C

operating pressure

PN 16 to PN 25

\* Type 60+60/182 T<sub>max</sub> 130 °C



## **System description**

#### 1. Carrier pipe

Materials Corrugated carrier pipe made of nickel chromium steel

X5 CrNi 18-10 (1.4301, AISI 304) or X6 CrNiMoTi 17-12-2 (1.4571, AISI 316Ti) or X2 CrNiMo 17-12-2 (1.4404, AISI 316L)

Requirements: Steel quality to EN 10088

#### 2. Thermal insulation

Material: CFC-free, cyclopentane-blown polyisocyanurate rigid foam (PIR)

with  $\lambda_{50}$  value: 0.025 W/mK.

| PIR insulation                  | Reference temperature °C | CASAFLEX value         | Test standard |
|---------------------------------|--------------------------|------------------------|---------------|
| Density                         | -                        | > 60 kg/m <sup>3</sup> | DIN 53420     |
| Thermal conductivity            | 50                       | ≤ 0.025 W/mK           | DIN 52612     |
| Percentage of closed cells      | -                        | ≥ 90 %                 | EN 253        |
| Water absorption after 24 hours | -                        | ≤ 10 %                 | EN 253        |

#### 3. Expanded metal mesh

Material: Steel

Purpose: Mechanical reinforcement of the flexible pipe system

#### 4. Barrier film

Material: Multiple-layer composite film

Purpose: To impede diffusion of the cyclopentane cellular gas

#### 5. Protective casing

Material: Low-density polyethylene (LLD-PE), seamlessly extruded Purpose: Protection against mechanical action and humidity

| PE-LD protective casing   | Reference temperature °C | Value     | Test standard |
|---------------------------|--------------------------|-----------|---------------|
| Density                   | -                        | 931 kg/m³ | ISO 1183      |
| Thermal conductivity      | -                        | 0.43 W/mK | DIN 52612     |
| Crystallite melting range | -                        | 122 °C    | ISO 11357-3   |

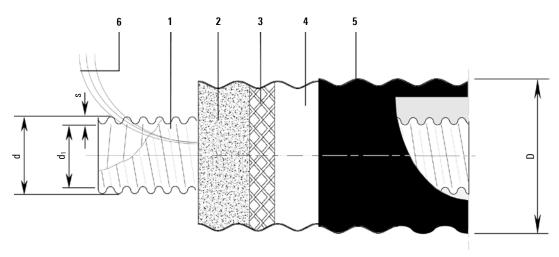
#### 6. Monitoring wires

Materials: 1 x NiCr, red, insulated/perforated, Ø 1.1 mm/0.5 mm<sup>2</sup>

1 x Cu, green, insulated, Ø 1.3 mm/0.8 mm<sup>2</sup>

1 x Cu, white with nonwoven, Ø 1.55 mm/1.13 mm  $^{2}\,$ 

Systems: Conductor pairs: NiCr-red + Cu-green ≜ WIREM/Brandes system


Cu-green + Cu-white ≜ Nordic system

Purpose: Identification and location of moisture by means of resistance or pulse measurements



# **CASAFLEX UNO range**

Heating, 16 to 25 bar

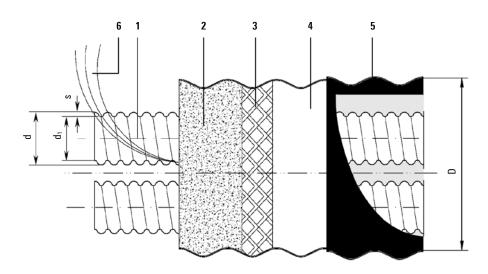


#### Structure

- 1 Stainless steel carrier pipe
- 2 PIR foam
- 3 Expanded metal mesh
- 4 Barrier film
- 5 PE-LD casing
- 6 Monitoring wires

#### **CASAFLEX UNO**

| Туре    | DN  | Inches | Inner pipe              | Outer casing | Minimum        | Volume     | Weight | Maxin              | ıum del            | ivery le           | ngths  |
|---------|-----|--------|-------------------------|--------------|----------------|------------|--------|--------------------|--------------------|--------------------|--------|
|         |     |        | $d \times d_1 \times s$ | D            | Bending radius | Inner pipe |        | Coil <sup>1)</sup> | Coil <sup>2)</sup> | Coil <sup>3)</sup> | Coil4) |
|         |     | "      | mm                      | mm           | m              | I/m        | kg/m   | m                  | m                  | m                  | m      |
| 22/ 91  | 20  | 3/4"   | 25 x 22 x 0.3           | 91           | 0.8            | 0.44       | 1.30   | 320                | 480                | 560                | _      |
| 30/111  | 25  | 1″     | 34 x 30 x 0.3           | 111          | 1.0            | 0.80       | 1.48   | 205                | 290                | 360                | _      |
| 39/126  | 32  | 1 1/4" | 44 x 39 x 0.4           | 126          | 1.2            | 1.35       | 2.15   | 155                | 230                | 250                | -      |
| 48/126  | 40  | 1 ½"   | 55 x 48 x 0.5           | 126          | 1.2            | 2.04       | 2.46   | 155                | 230                | 250                | _      |
| 60/142  | 50  | 2"     | 66 x 60 x 0.5           | 142          | 1.3            | 3.12       | 3.02   | 100                | 150                | 200                | _      |
| 75/162  | 65  | 2 ½"   | 86 x 75 x 0.6           | 162          | 1.8            | 5.12       | 4.10   | 55                 | 100                | 145                | _      |
| 98/162  | 80  | 3″     | 109 x 98 x 0.8          | 162          | 1.8            | 8.43       | 5.70   | 55                 | 100                | 145                | _      |
| 127/202 | 100 | 4"     | 143 x 127 x 0.9         | 210          | 2.8            | 14.30      | 8.80   | _                  | 40                 | -                  | 75     |


- 1) Coil dimensions Ø 2800 x 800 mm (width)
- 2) Coil dimensions Ø 2800 x 1200 mm (width)
- 3) Coil dimensions Ø 3000 x 1200 mm (width)
- 4) Coil dimensions Ø 3000 x 1400 mm (width)

Supplied in drums on request



# **CASAFLEX DUO range**

Heating, 16 bar



#### Structure

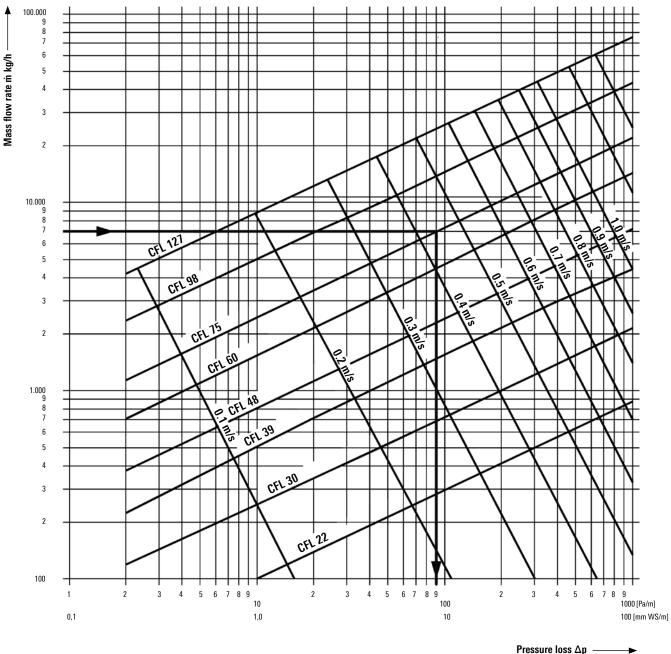
- 1 Stainless steel carrier pipe
- 2 PIR foam
- 3 Expanded metal mesh
- 4 Barrier film
- 5 PE-LD casing
- 6 Monitoring wires

#### **CASAFLEX DUO**

| Туре         | DN | Inches | Inner pipe              | Outer casing | Minimum        | Volume     | Weight  | Maxim              | um deliv           | ery lengt          | ths                |
|--------------|----|--------|-------------------------|--------------|----------------|------------|---------|--------------------|--------------------|--------------------|--------------------|
|              |    |        | $d \times d_1 \times s$ | D            | Bending radius | Inner pipe |         | Coil <sup>1)</sup> | Coil <sup>2)</sup> | Coil <sup>3)</sup> | Coil <sup>4)</sup> |
|              |    | "      | mm                      | mm           | m              | I/m        | kg/m    | m                  | m                  | m                  |                    |
| 22 + 22/111  | 20 | 3/4"   | 25 x 22 x 0.3           | 111          | 1.1            | 0.44       | 2 x 2.5 | 205                | 290                | 360                | -                  |
| 30 + 30/126  | 25 | 1"     | 34 x 30 x 0.3           | 126          | 1.4            | 0.80       | 2 x 3.1 | 155                | 230                | 250                | -                  |
| 39 + 39/142  | 32 | 1 1/4" | 44 x 39 x 0.4           | 142          | 1.5            | 1.35       | 2 x 3.7 | 100                | 150                | 200                | -                  |
| 48 + 48/162  | 40 | 1 ½"   | 55 x 48 x 0.5           | 162          | 1.8            | 2.04       | 2 x 4.2 | 55                 | 100                | 145                | _                  |
| 60 + 60/182* | 50 | 2"     | 66 x 60 x 0.5           | 182          | 2.0            | 3.12       | 2 x 5.1 | 55                 | 80                 | _                  | _                  |

<sup>\*</sup> Max. permitted operating temp.  $T_{\text{max.}}$  130 °C (not available in Germany)

- 1) Coil dimensions Ø 2800 x 800 mm (width)
- 2) Coil dimensions Ø 2800 x 1200 mm (width)
- 3) Coil dimensions Ø 3000 x 1200 mm (width)
- 4) Coil dimensions Ø 3000 x 1400 mm (width)


Supplied in drums on request



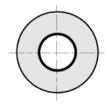
## **Pressure loss chart**

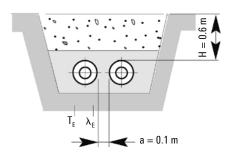
Water temperature 80 °C

 $\dot{m}$  = Flow rate in kg/h  $\dot{m} \approx \frac{0.860}{}$ Q = Power requirement in kW  $\Delta T =$  Temperature difference VL (flow) / RL (return) in °C



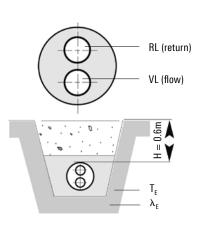
#### Example:


Mass flow rate 7000 kg/h; CASAFLEX type CFL 75 -> Pressure loss 90 Pa/m




# **Heat loss**

#### **CASAFLEX UNO**


| Heat loss q [ | Heat loss q [W/m] for one UNO pipe |       |                                                   |      |      |      |      |      |      |      |      |  |  |
|---------------|------------------------------------|-------|---------------------------------------------------|------|------|------|------|------|------|------|------|--|--|
| CASAFLEX      | U-value                            | Avera | Average operating temperature T <sub>B</sub> [°C] |      |      |      |      |      |      |      |      |  |  |
| UNO           | [W/mK]                             | 40°   | 50°                                               | 60°  | 70°  | 80°  | 90°  | 100° | 110° | 120° | 130° |  |  |
| 22/ 91        | 0.113                              | 3.4   | 4.5                                               | 5.7  | 6.8  | 7.9  | 9.0  | 10.2 | 11.3 | 12.4 | 13.5 |  |  |
| 30/111        | 0.123                              | 3.7   | 4.9                                               | 6.1  | 7.3  | 8.5  | 9.8  | 11.0 | 12.2 | 13.4 | 14.6 |  |  |
| 39/126        | 0.137                              | 4.1   | 5.5                                               | 6.8  | 8.2  | 9.6  | 10.9 | 12.3 | 13.6 | 15.9 | 16.4 |  |  |
| 48/126        | 0.170                              | 5.1   | 6.8                                               | 8.5  | 10.2 | 11.8 | 13.5 | 15.2 | 16.9 | 18.6 | 20.3 |  |  |
| 60/142        | 0.187                              | 5.6   | 7.4                                               | 9.3  | 11.2 | 13.0 | 14.9 | 16.8 | 18.6 | 20.5 | 22.4 |  |  |
| 75/162        | 0.218                              | 6.5   | 8.7                                               | 10.9 | 13.0 | 15.2 | 17.4 | 19.5 | 21.7 | 23.9 | 26.1 |  |  |
| 98/162        | 0.355                              | 10.1  | 13.4                                              | 16.8 | 20.1 | 23.5 | 26.8 | 30.2 | 33.5 | 36.9 | 40.2 |  |  |
| 127/202       | 0.366                              | 11.0  | 14.7                                              | 18.3 | 22.0 | 25.6 | 29.3 | 33.0 | 36.6 | 40.3 | 44.0 |  |  |





#### **CASAFLEX DUO**

| Heat loss q [W/m] for one DUO pipe |                                                       |                                                                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| U-value                            | Avera                                                 | Average operating temperature T <sub>B</sub> [°C]                                                                                                     |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| [W/mK]                             | 40°                                                   | 50°                                                                                                                                                   | 60°                                                                                                                                                                                                            | 70°                                                                                                                                                                                                                                                                                  | 80°                                                                                                                                                                                                                                                                                                                                          | 90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 0.156                              | 4.7                                                   | 6.2                                                                                                                                                   | 7.8                                                                                                                                                                                                            | 9.4                                                                                                                                                                                                                                                                                  | 10.9                                                                                                                                                                                                                                                                                                                                         | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 0.181                              | 5.4                                                   | 7.2                                                                                                                                                   | 9.0                                                                                                                                                                                                            | 10.9                                                                                                                                                                                                                                                                                 | 12.7                                                                                                                                                                                                                                                                                                                                         | 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 0.224                              | 6.7                                                   | 8.9                                                                                                                                                   | 11.2                                                                                                                                                                                                           | 13.4                                                                                                                                                                                                                                                                                 | 15.7                                                                                                                                                                                                                                                                                                                                         | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 0.251                              | 7.5                                                   | 10.0                                                                                                                                                  | 12.5                                                                                                                                                                                                           | 15.0                                                                                                                                                                                                                                                                                 | 17.6                                                                                                                                                                                                                                                                                                                                         | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 0.271*                             | 8.1                                                   | 10.8                                                                                                                                                  | 13.6                                                                                                                                                                                                           | 16.3                                                                                                                                                                                                                                                                                 | 19.0                                                                                                                                                                                                                                                                                                                                         | 21.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                    | U-value<br>[W/mK]<br>0.156<br>0.181<br>0.224<br>0.251 | U-value [W/mK]         Average (W/mK)           0.156         4.7           0.181         5.4           0.224         6.7           0.251         7.5 | U-value<br>[W/mK]         Average open<br>50°           0.156         4.7         6.2           0.181         5.4         7.2           0.224         6.7         8.9           0.251         7.5         10.0 | U-value<br>[W/mK]         Average operating to<br>50°         60°           0.156         4.7         6.2         7.8           0.181         5.4         7.2         9.0           0.224         6.7         8.9         11.2           0.251         7.5         10.0         12.5 | U-value<br>[W/mK]         Average operating temperating<br>50° 60° 70°           0.156         4.7         6.2         7.8         9.4           0.181         5.4         7.2         9.0         10.9           0.224         6.7         8.9         11.2         13.4           0.251         7.5         10.0         12.5         15.0 | U-value<br>[W/mK]         Average operating temperature T <sub>B</sub> [W/mK]         40°         50°         60°         70°         80°           0.156         4.7         6.2         7.8         9.4         10.9           0.181         5.4         7.2         9.0         10.9         12.7           0.224         6.7         8.9         11.2         13.4         15.7           0.251         7.5         10.0         12.5         15.0         17.6 | U-value         Average operating temperature T <sub>B</sub> [°C]           [W/mK]         40°         50°         60°         70°         80°         90°           0.156         4.7         6.2         7.8         9.4         10.9         12.5           0.181         5.4         7.2         9.0         10.9         12.7         14.5           0.224         6.7         8.9         11.2         13.4         15.7         17.9           0.251         7.5         10.0         12.5         15.0         17.6         20.1 | U-value         Averse operating temperature T <sub>B</sub> [°C]           [W/mK]         40°         50°         60°         70°         80°         90°         100°           0.156         4.7         6.2         7.8         9.4         10.9         12.5         14.0           0.181         5.4         7.2         9.0         10.9         12.7         14.5         16.3           0.224         6.7         8.9         11.2         13.4         15.7         17.9         20.2           0.251         7.5         10.0         12.5         15.0         17.6         20.1         22.6 | U-value         Average operating temperature T <sub>B</sub> [°C]           [W/mK]         40°         50°         60°         70°         80°         90°         100°         110°           0.156         4.7         6.2         7.8         9.4         10.9         12.5         14.0         15.6           0.181         5.4         7.2         9.0         10.9         12.7         14.5         16.3         18.1           0.224         6.7         8.9         11.2         13.4         15.7         17.9         20.2         22.4           0.251         7.5         10.0         12.5         15.0         17.6         20.1         22.6         25.1 | U-value         Aversue operating temperature T <sub>B</sub> [°C]           [W/mK]         40°         50°         60°         70°         80°         90°         100°         110°         120°           0.156         4.7         6.2         7.8         9.4         10.9         12.5         14.0         15.6         17.2           0.181         5.4         7.2         9.0         10.9         12.7         14.5         16.3         18.1         19.9           0.224         6.7         8.9         11.2         13.4         15.7         17.9         20.2         22.4         24.6           0.251         7.5         10.0         12.5         15.0         17.6         20.1         22.6         25.1         27.6 |  |



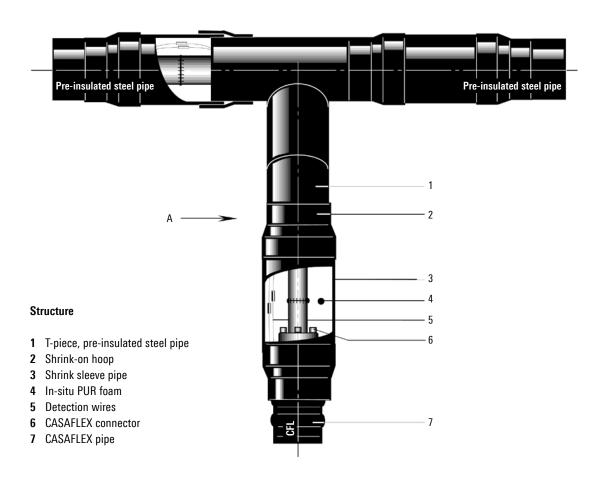
Conductivity of PIR foam:  $\lambda_{PIR} = 0.0250 \text{ W/mK}$  at average temperature of 50 °C \*Conductivity of PUR foam:  $\lambda_{PIR} = 0.0234 \text{ W/mK}$  at average temperature of 50 °C

Conductivity of PE casing:  $\lambda_{PE} = 0.43 \text{ W/mK}$ 

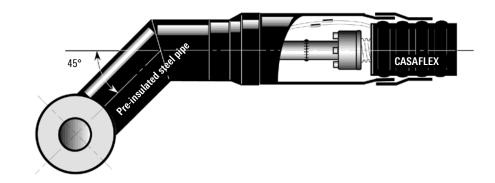
Heat loss during operation:

 $q = U (T_B - T_E) [W/m]$ 

U = Heat transfer coefficient [W/mK]  $T_B = Average operating temperature [°C]$  $T_E = Average ground temperature [°C]$ 


VL = FlowRL = Return

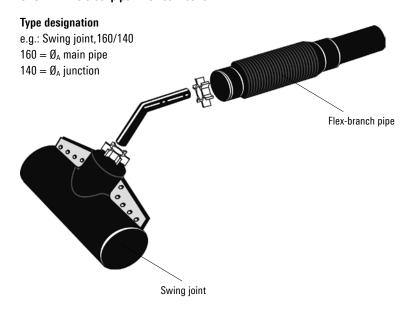



# T-joint

CASAFLEX connected to pre-insulated steel pipe

#### Structure of T-joint




#### View A



# Flex-T-branch, 45°

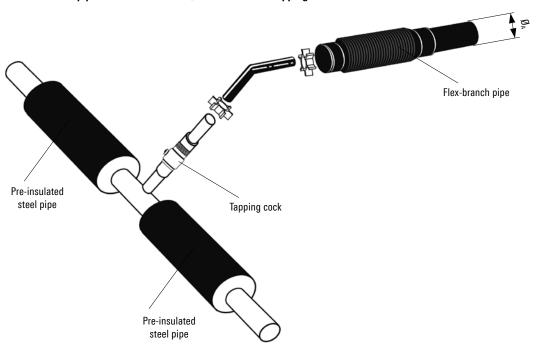
Branch, main pipe

#### CASAFLEX to steel pipe - 45° connection



#### T-branch, steel pipe with CASAFLEX junction

| Main pipe       | Junction          | Branch pipe | Swing joint |
|-----------------|-------------------|-------------|-------------|
| $\emptyset_{A}$ | $\mathcal{O}_{A}$ | Туре        | Туре        |
| mm              | mm                |             |             |
| 110             | 90                | 90          | 110/ 90     |
| 125             | 90 or 110         | 110         | 125/110     |
| 140             | 90 or 110         | 110         | 140/110     |
| 140             | 125               | 125         | 140/125     |
| 160             | 90 or 110         | 110         | 160/110     |
| 160             | 125 or 140        | 140         | 160/140     |
| 180             | 90 or 110         | 110         | 180/110     |
| 180             | 125 or 140        | 140         | 180/140     |
| 200             | 90 or 110         | 110         | 200/110     |
| 200             | 125 or 140        | 140         | 200/140     |
| 225             | 90 or 110         | 110         | 225/110     |
| 225             | 125 or 140        | 140         | 225/140     |
| 250             | 90 or 110         | 110         | 250/110     |
| 250             | 125 or 140        | 140         | 250/140     |
| 280             | 90 or 110         | 110         | 280/110     |
| 280             | 125 or 140        | 140         | 280/140     |
| 315             | 90 or 110         | 110         | 315/110     |
| 315             | 125 or 140        | 140         | 315/140     |


Supplied on request.



## Flex-T-branch, 45°

with and without tapping cock

Insulated steel pipe - Flex-T-branch 45°, with or without tapping cock



#### Flex-branch pipe for connection with or without tapping cock

| CASAFLEX   | DN | Junction Ø <sub>A</sub> | Junction          | Ø <sub>A</sub>                        |
|------------|----|-------------------------|-------------------|---------------------------------------|
| Туре       |    | Type: Flex-branch pipe  | ••                | x-branch pipe                         |
|            |    | without tapping cock    | with tapp<br>full | oing cock, through passage<br>reduced |
|            |    | mm                      | mm                | mm                                    |
| CFL 22/ 91 | 20 | 110                     | 110               | 110                                   |
| CFL 30/111 | 25 | 110                     | 110               | 110                                   |
| CFL 39/126 | 32 | 140                     | 140               | 140                                   |
| CFL 48/126 | 40 | 140                     | 140               | 140                                   |
| CFL 60/142 | 50 | 140                     | _                 | 140                                   |

Supplied on request

#### **Execution example**

Desired execution: 45° branch with tapping cock, with full through passage

Pre-insulated steel pipe:  $\emptyset_A = 315 \text{ mm}$ Branch DN 40

Table on CFL 4.315:

CASAFLEX type 48/111, tapping cock - full through passage - results in junction  $\emptyset_A$  or flex-branch pipe type = 125 mm

Table on CFL 4.310:

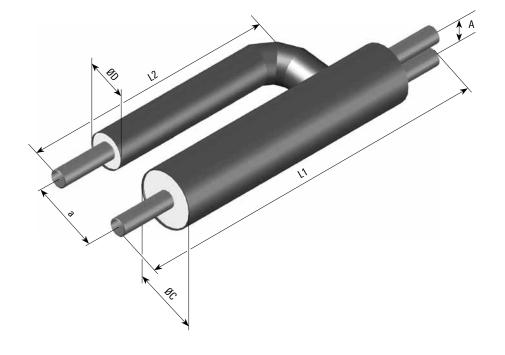
Main pipe  $\emptyset_A=315$  mm, results in flex-T-branch, type 315/125

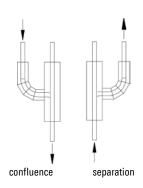


# Y-branch pipe Type G (straight)

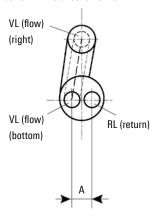
#### **CASAFLEX UNO**

Y-branch pipes are employed to provide a transition from conventionally laid piping using two single pipes CASAFLEX UNO to the space-saving PREMANT DUO format. The upper pipe (preferably the return pipe) runs straight ahead through the Y-branch pipe while the lower pipe is angled at 90°. In the Type G pipe the double pipe and the single pipe are axially parallel. Mounting plates are fixed to the side of the double pipe connection joint.


#### **Construction variants**


Two different construction variants of the Y-branch pipe Type G are available. The type required should be given when ordering. The arrows in the sketch show the flow direction of the feed.

Carrier pipe: welded steel pipe DIN EN 253


**Heat insulation:** PUR hard foam

**Casing pipe:** PE-HD **Insulation thickness:** N – standard





**Note:** The flow (VL) in UNO pipes is always on the right in the direction of flow. The flow (VL)in DUO pipes it is always at the bottom in the direction of flow.



| DN | Diameter | Installation | Junction | Distance | ØC  | Α    | 2 x single | ØD  |
|----|----------|--------------|----------|----------|-----|------|------------|-----|
|    |          | length       |          |          |     |      | steel pipe |     |
|    | da       | L1*          | L2**     | a        |     |      |            |     |
|    | mm       | mm           | mm       | mm       | mm  | mm   | mm         | mm  |
| 20 | 26.9     | 1500         | 1000     | 250      | 125 | 45.9 | 26.9 x 2.6 | 90  |
| 25 | 33.7     | 1500         | 1000     | 250      | 140 | 52.7 | 33.7 x 2.6 | 90  |
| 32 | 42.4     | 1500         | 1000     | 300      | 160 | 61.4 | 42.4 x 2.6 | 110 |
| 40 | 48.3     | 1500         | 1000     | 300      | 160 | 67.3 | 48.3 x 2.6 | 110 |
| 50 | 60.3     | 1500         | 1000     | 300      | 200 | 80.3 | 60.3 x 2.9 | 125 |
|    |          |              |          |          |     |      |            |     |

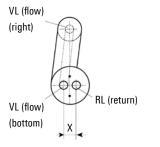
<sup>\*</sup> free pipe end 200 mm

A reducing socket must be used on the side with the single pipe to connect the straight through pipe.



<sup>\*\*</sup> measured from the middle of the branch line

# Y-branch pipe

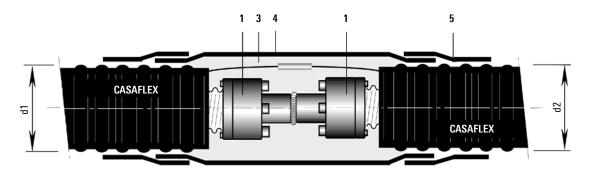

#### CASAFLEX-DUO

Y-branch pipes are employed to provide a transition from conventionally laid piping using two single pipes PREMANT UNO to the space-saving CASAFLEX DUO format.

# VL (flow) (right) O D Steel pipe CFL detection wire RL (return) Steel pipe min. 650 150

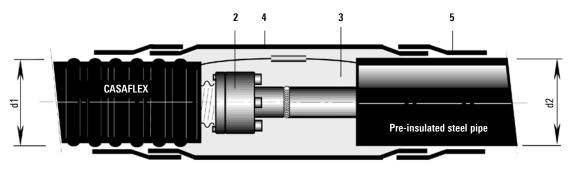
#### View: A - A

**Note:** The flow (VL) in UNO pipes is always on the right in the direction of flow. The flow (VL) in DUO pipes it is always at the bottom in the direction of flow.




Figures in mm

| Туре        | DN | Inches | Pipe connection | ØC  | Α   | 2 x single  | Ø D       |
|-------------|----|--------|-----------------|-----|-----|-------------|-----------|
|             |    |        | d x s           |     |     | steel pipes |           |
|             |    | "      | mm              | mm  | mm  | mm          | mm        |
| 22 + 22/111 | 20 | 3/4"   | 26.9 x 2.6      | 140 | 55  | 26.9 x 2.6  | 90 / 110  |
| 30 + 30/126 | 25 | 1"     | 33.7 x 3.2      | 160 | 65  | 33.7 x 2.6  | 90 / 110  |
| 39 + 39/142 | 32 | 1 1/4" | 42.4 x 3.2      | 200 | 81  | 42.4 x 2.6  | 110 / 125 |
| 48 + 48/162 | 40 | 1 ½"   | 48.3 x 3.2      | 225 | 93  | 48.3 x 2.6  | 110 / 125 |
| 60 + 60/182 | 50 | 2"     | 60.3 x 3.6      | 250 | 109 | 60.3 x 2.9  | 125 / 140 |


## Joint

#### **CASAFLEX to CASAFLEX joint**



Ø inner pipe identical

#### **CASAFLEX** to steel pipe joint



#### Structure

- 1 Through coupling (2 connectors, welded by customer or others)
- 2 ME connector; see sheet CFL 4.335, item 3
- 3 Insulating material (PUR foam); see sheet CFL 4.345
- 4 Shrink sleeve pipe
- 5 Shrink hose

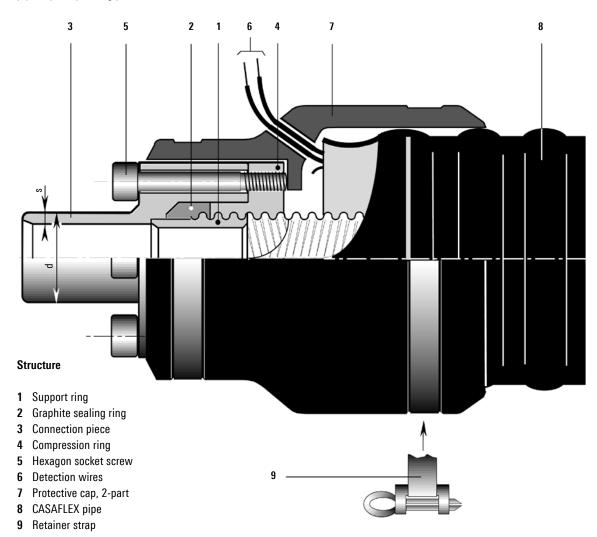
#### CASAFLEX – CASAFLEX

| d2 |     | 91 | 111 | 126 | 142 | 162 | 182  | 202  |
|----|-----|----|-----|-----|-----|-----|------|------|
|    | 91  | Χ  |     |     |     |     |      |      |
|    | 111 |    | Χ   |     |     |     |      |      |
| d1 | 126 |    |     | Χ   |     |     |      |      |
| uı | 142 |    |     |     | Χ   |     |      |      |
|    | 162 |    |     |     |     | Χ   |      |      |
|    | 182 |    |     |     |     |     | RMBD |      |
|    | 202 |    |     |     |     |     |      | RMBD |

<sup>\*</sup> further joint systems and reduction sleeves are available on request

#### CASAFLEX - steel pipe

| d2 |     | 90 | 110 | 125 | 140 | 160 | 180  | 200  |
|----|-----|----|-----|-----|-----|-----|------|------|
|    | 91  | Χ  | Χ   | Χ   |     |     |      |      |
|    | 111 | Χ  | Χ   | Χ   |     |     |      |      |
| d1 | 126 |    |     | Χ   | Χ   |     |      |      |
| uı | 142 |    |     |     | Χ   | Χ   |      |      |
|    | 162 |    |     |     |     | Χ   |      |      |
|    | 182 |    |     |     |     |     | RMBD | RMBD |
|    | 202 |    |     |     |     |     |      | RMBD |


Figures in mm



## **Connector**

CASAFLEX UNO, DN 20 - DN 80 (PN 16)

The CASAFLEX connector is specifically designed for CASAFLEX district heating pipes. It is used to make all connections on pipe installations in buildings and shafts and for through-type and T-joints. The connectors are intended for hot water pipes up to operating pressures of 16 bar.



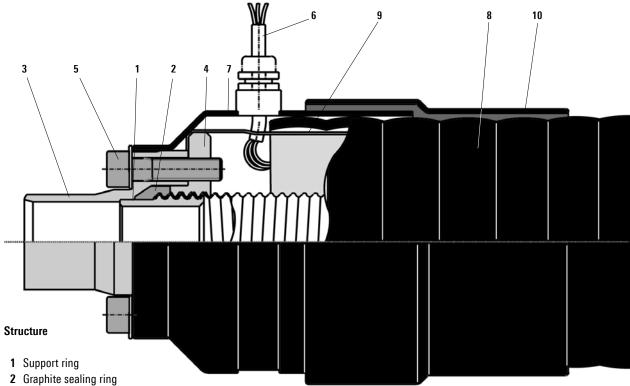
#### **CASAFLEX UNO / PN 16**

| Туре   | DN | Inches | Pipe connection |  |
|--------|----|--------|-----------------|--|
|        |    |        | d x s           |  |
|        |    | "      | mm              |  |
| 22/ 91 | 20 | 3/4"   | 26.9 x 2.6      |  |
| 30/111 | 25 | 1"     | 33.7 x 3.2      |  |
| 39/126 | 32 | 1 1/4" | 42.4 x 3.2      |  |
| 48/126 | 40 | 1 ½"   | 48.3 x 3.2      |  |
| 60/142 | 50 | 2"     | 60.3 x 3.6      |  |
| 75/162 | 65 | 2 1/2" | 76.1 x 3.6      |  |
| 98/162 | 80 | 3"     | 88.9 x 4.0      |  |

#### Uses

| Туре          | Execution                 |
|---------------|---------------------------|
| Dry building  | as per drawing            |
| T-piece/joint | Pos. 7, no protective cap |
| Shaft         | see CFL 4.530             |




## **Connector**

CASAFLEX UNO, DN 20 - DN 50 (PN 25)

The CASAFLEX connector is specifically designed for CASAFLEX district heating pipes. It is used to make all connections on pipe installations in buildings and shafts and for through-type and T-joints.

On connector type PN 25, the expanded mesh (9) is drawn in over a metal plate cap; this increases mechanical stability, as is necessary for operating pressures above 16 bar.

The connectors are intended for hot water pipes up to operating pressures of 25 bar.

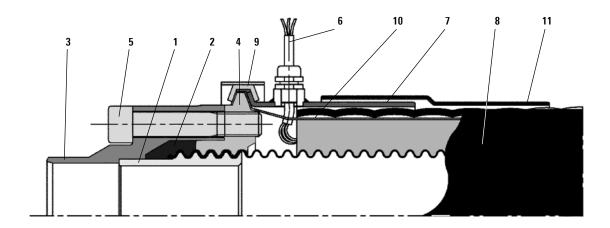


- 3 Connection piece
- 4 Compression ring
- 5 Hexagon socket screw
- 6 Detection wires
- 7 Protective cap and wire outlet
- 8 CASAFLEX pipe
- 9 Expanded metal mesh
- 10 Shrink-on collar

#### **CASAFLEX UNO / PN 25**

| Туре   | DN | Inches | Pipe connection |
|--------|----|--------|-----------------|
|        |    |        | d x s           |
|        |    | "      | mm              |
| 22/ 91 | 20 | 3/4"   | 26.9 x 2.6      |
| 30/111 | 25 | 1"     | 33.7 x 3.2      |
| 39/126 | 32 | 1 1/4" | 42.4 x 3.2      |
| 48/126 | 40 | 1 ½"   | 48.3 x 3.2      |
| 60/142 | 50 | 2"     | 60.3 x 3.6      |




## **Connector**

CASAFLEX UNO, DN 65 - DN 80 (PN 25)

The CASAFLEX connector is specifically designed for CASAFLEX district heating pipes. It is used to make all connections on pipe installations in buildings and shafts and for through-type and T-joints.

On connector type PN 25, the expanded mesh (9) is fixed by a metal clamp; this increases mechanical stability, as is necessary for operating pressures above 16 bar.

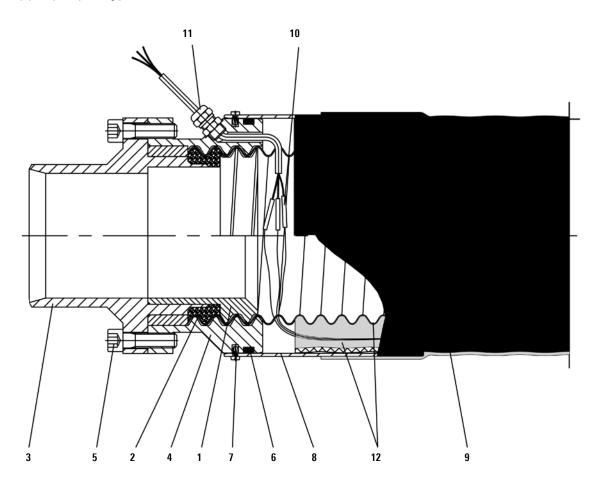
The connectors are intended for hot water pipes up to operating pressures of 25 bar.



#### Structure

- 1 Back-up ring
- 2 Graphite sealing ring
- 3 Connection piece
- 4 Pressure ring
- 5 Hexagonal socket head screw
- 6 Monitor leads
- 7 Protective cap and monitor lead exit
- 8 CASAFLEX pipe
- 9 Clamping ring
- 10 Expanded metal
- 11 Shrink sleeve

#### **CASAFLEX UNO / PN 25**


| Туре   | DN | Inches | Pipe connection<br>d x s |
|--------|----|--------|--------------------------|
|        |    | "      | mm                       |
| 75/162 | 65 | 2 1/2" | 76.1 x 3.6               |
| 98/162 | 80 | 3"     | 88.9 x 4.0               |



## **Connector**

CASAFLEX UNO, DN 100 (PN 16)

The CASAFLEX connector is specifically designed for CASAFLEX district heating pipes. It is used to make all connections on pipe installations in buildings and shafts and for through-type and T-joints. The connectors are intended for hot water pipes up to operating pressures of 16 bar.

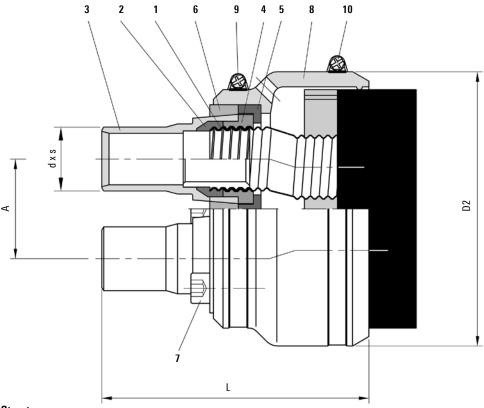


#### Structure

- 1 Internal backing sleeve
- 2 Graphite packing
- 3 Connection piece
- 4 Thrust collar
- 5 Cylindrical screw
- **6** 0-ring
- 7 screw
- 8 Protective cap
- 9 Shrink sleeve
- 10 Detection conductor
- 11 Connector for monitoring wires
- 12 CASAFLEX pipe

#### **CASAFLEX UNO / PN 16**

| Туре    | DN  | Inches | Pipe connection |
|---------|-----|--------|-----------------|
|         |     |        | d x s           |
|         |     | "      | mm              |
| 127/202 | 100 | 4"     | 114.3 x 4.5     |




## **Connector**

CASAFLEX DUO, DN 20 - DN 50 (PN 16)

The CASAFLEX connector is specifically designed for CASAFLEX district heating pipes. It is used to make all connections on pipe installations in buildings and shafts and for through-type and T-joints.

A plastic protective cap is used with type CASAFLEX DUO. The connectors are intended for hot water pipes up to operating pressures of 16 bar.



#### Structure

- 1 Support ring
- 2 Graphite seal
- 3 Connection piece
- 4 Compression ring
- **5** Pressure plate A
- 6 Conical plate B
- 7 Hexagon socket screw
- 8 Protective cap (2-part)
- 9 Hose clamp
- 10 Hose clamp

#### CASAFLEX DUO / PN 16

| Туре        | DN | Inches | Pipe connection | Axis distance | Length |     |
|-------------|----|--------|-----------------|---------------|--------|-----|
|             |    |        | d x s           | Α             | L      | D2  |
|             |    | "      | mm              | mm            | mm     | mm  |
| 22 + 22/111 | 20 | 3/4"   | 26.9 x 2.6      | 45.9          | ≈138   | 131 |
| 30 + 30/126 | 25 | 1"     | 33.7 x 3.2      | 52.7          | ≈141   | 145 |
| 39 + 39/142 | 32 | 1 1/4" | 42.4 x 3.2      | 61.4          | ≈208   | 164 |
| 48 + 48/162 | 40 | 1 ½"   | 48.3 x 3.2      | 69.0          | ≈232   | 184 |
| 60 + 60/182 | 50 | 2"     | 60.3 x 2.9      | 79.7          | ≈210   | 245 |



## **Accessories**

PUR foam containers, pipe warning tape

#### **PUR foam containers**

The required quantity of CFC-free polyurethane foam is delivered in suitable container sizes for the various joints and T-pieces. The components are supplied separately in two bottles and are only mixed together when needed.

#### Important:

Please note the safety regulations in the installation instructions supplied with the product.

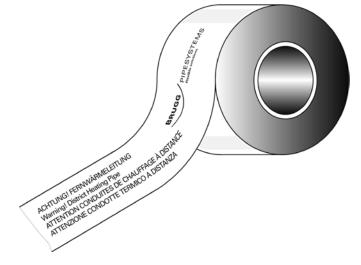


Synthetic gloves



Protective goggles



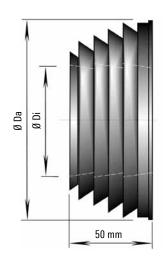

#### Important:

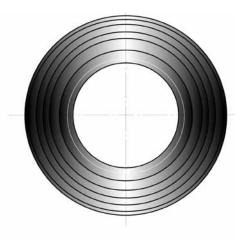
The PUR foam can be used up to a maximum temperature of 130  $^{\circ}$ C. For higher operating temperatures (max. 160  $^{\circ}$ C), please consult BRUGG.

#### Pipe warning tape

Pipe warning tape to be laid in the ground Standard roll length: 250 m

Installation depth; see sheet CFL 4.505




# Wall seal

for wall openings







#### **CASAFLEX UNO/DUO**

| Outer casing diameter | Neoprene wall sealing ring |             |  |
|-----------------------|----------------------------|-------------|--|
|                       | Ø Di, inner                | Ø Da, outer |  |
| mm                    | mm                         | mm          |  |
| 91                    | 93                         | 133         |  |
| 111                   | 113                        | 153         |  |
| 126                   | 128                        | 168         |  |
| 142                   | 144                        | 183         |  |
| 162                   | 164                        | 203         |  |
| 202                   | 204                        | 240         |  |

Building entry (see sheet CFL 4.520)

# Ring seal

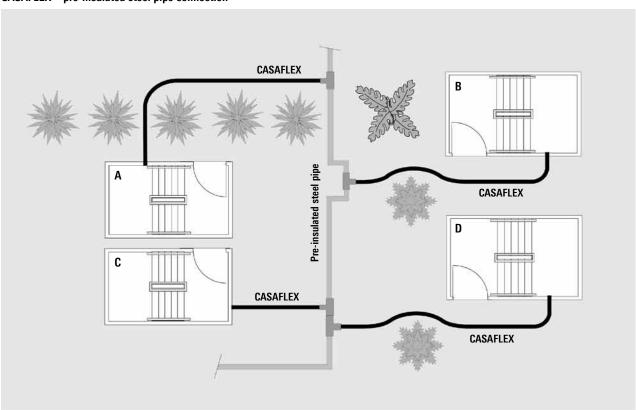
For core bore / fiber cement liner pipes

Ring seal set, type C40 1 x per opening

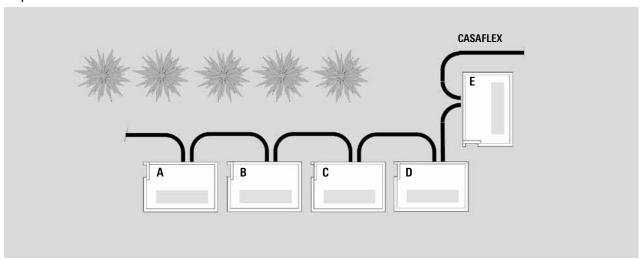




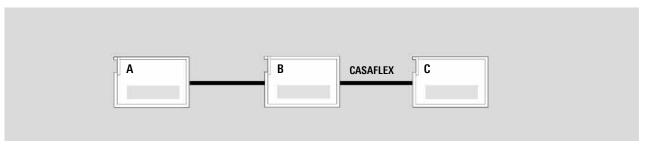



#### **CASAFLEX UNO/DUO**

| Outer casing | Liner pipe, core bore | Seal set   | Seal set   |
|--------------|-----------------------|------------|------------|
| Ø            | Ø                     | Ø D, inner | Ø D, outer |
| mm           | mm                    | mm         | mm         |
| 91           | 150                   | 93         | 150        |
| 111          | 200                   | 113        | 200        |
| 126          | 200                   | 128        | 200        |
| 142          | 200                   | 144        | 200        |
| 162          | 250                   | 163        | 250        |
| 202          | 300                   | 210        | 300        |
|              |                       |            |            |

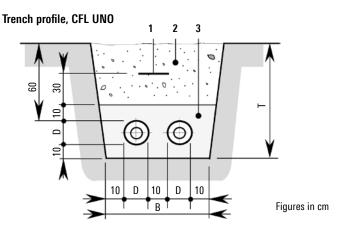

Building entry/core bore (see sheet CFL 4.525)

# Pipe routing

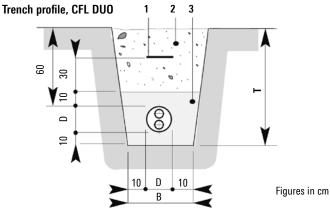

CASAFLEX - pre-insulated steel pipe connection



#### Loop-in method

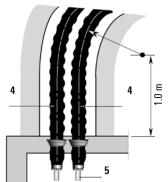



#### House-to-house connection






## **Trench dimensions**




| CASAFLEX     | Width | Depth | Minimum |
|--------------|-------|-------|---------|
| Outer casing |       |       | Bending |
| ØD           | В     | T     | radius  |
| mm           | cm    | cm    | m       |
| 91           | 50    | 80    | 1.0     |
| 111          | 55    | 85    | 1.0     |
| 126          | 55    | 85    | 1.2     |
| 142          | 60    | 85    | 1.5     |
| 162          | 65    | 90    | 1.8     |
| 202          | 70    | 95    | 2.8     |



| CASAFLEX     | Width | Depth | Minimum |
|--------------|-------|-------|---------|
| Outer casing |       |       | Bending |
| Ø D          | В     | T     | radius  |
| mm           | cm    | cm    | m       |
| 111          | 30    | 85    | 1.1     |
| 126          | 35    | 85    | 1.4     |
| 142          | 35    | 85    | 1.5     |
| 162          | 35    | 90    | 1.8     |
| 182          | 38    | 90    | 2.0     |

#### Ground plan of trench for house connection



#### divana pian of trenen for nouse connection

#### Structure

- 1 Pipe warning tape; see sheet CFL 4.345
- 2 Excavated material, compactable
- 3 Sand, washed, grain size 0 8 mm
- 4 CASAFLEX district heating pipe
- 5 Connector; see sheet CFL 4.330 CFL 4.350

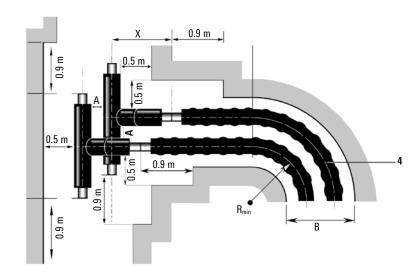
X = 1m when connecting a T-piece to CFL or 3m when connecting a T-piece to KMR

A = Pipe distance see sheet PRE 6.500

When connecting KMR DUO to CASAFLEX DUO the same dimensions are valid for one pipe axis  $\frac{1}{2}$ 

#### Installation depth

Max. installation depth: 2.6 m


Our approval is required for deeper installations.

#### SLW $30 \triangleq 300$ kN total load to DIN 1072;

if subject to higher traffic loads (e.g. SLW 60), a load-distributing superstructure as per RSt075 is required.

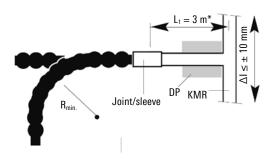
With no traffic load, the minimum trench depth T can be reduced by 20 cm.

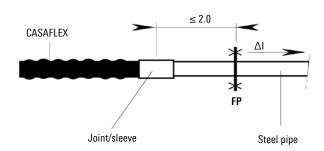
#### Ground plan of trench for T-piece connection





# Connection (rigid/flexible)

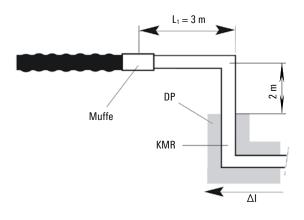

CASAFLEX - pre-insulated steel pipe


Installation instructions for transition from CASAFLEX to pre-insulated steel pipe

1. Junction with T-piece

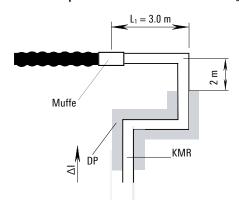
2. Transition with fixed point

All figures in m






The transverse expansion  $\Delta I$  must not exceed the expansion that can be accommodated by junction pipe L1 and the CASAFLEX pipes.


The expansion  $\Delta l$  of the plastic casing pipe (due to the increase in temperature) cannot be compensated by the CASAFLEX pipes. Installation requires a fixed point.

#### 3. Transition with Z-bend



4. Transition with expansion bend

All figures in m



Static design of the Z-bend according to expansion variable  $\Delta I$ .

 $\Delta I = Expansion$ 

FP = Fixed point (pre insulated steel pipe)

EP = Expansion pad

- Design of expansion components
- Positioning of expansion pads

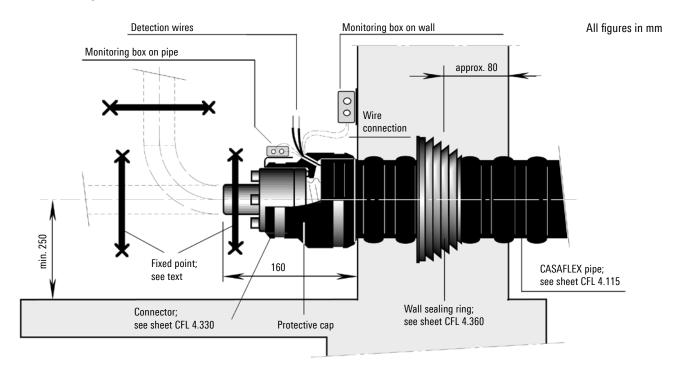
as per the section on PREMANT

# **Entry into building**

#### Fixed point forces

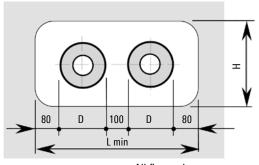
CASAFLEX district heating pipe is a self-compensating, statically resolved system, i.e. it accommodates thermally induced changes in length within the system. The system itself only has a limited ability to accommodate loads and deformations acting from outside. Connections to conventional systems must be executed on a 'low-load' basis. The following fixed point forces must be taken into account for each pipe, depending on self-compensation and inner pressure:

#### Fixed point forces per pipe


| F       | F                                                              | F                                                                                                                                                                                                                                      | F                                                                                                                                                                                                                                                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (6 bar) | (10 bar)                                                       | (16 bar)                                                                                                                                                                                                                               | (21 bar)                                                                                                                                                                                                                                                                                                                                                | (25 bar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (37.5 bar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| KN      | KN                                                             | KN                                                                                                                                                                                                                                     | KN                                                                                                                                                                                                                                                                                                                                                      | KN                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.3     | 0.5                                                            | 0.8                                                                                                                                                                                                                                    | 1.0                                                                                                                                                                                                                                                                                                                                                     | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.5     | 0.8                                                            | 1.4                                                                                                                                                                                                                                    | 1.8                                                                                                                                                                                                                                                                                                                                                     | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.8     | 1.4                                                            | 2.2                                                                                                                                                                                                                                    | 2.9                                                                                                                                                                                                                                                                                                                                                     | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.3     | 2.1                                                            | 3.4                                                                                                                                                                                                                                    | 4.5                                                                                                                                                                                                                                                                                                                                                     | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.9     | 3.2                                                            | 5.1                                                                                                                                                                                                                                    | 6.7                                                                                                                                                                                                                                                                                                                                                     | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.1     | 5.2                                                            | 8.3                                                                                                                                                                                                                                    | 10.9                                                                                                                                                                                                                                                                                                                                                    | 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5.1     | 8.5                                                            | 13.7                                                                                                                                                                                                                                   | 17.9                                                                                                                                                                                                                                                                                                                                                    | 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.6     | 14.4                                                           | 23.0                                                                                                                                                                                                                                   | 30.2                                                                                                                                                                                                                                                                                                                                                    | 36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | (6 bar)<br>KN<br>0.3<br>0.5<br>0.8<br>1.3<br>1.9<br>3.1<br>5.1 | (6 bar)         (10 bar)           KN         KN           0.3         0.5           0.5         0.8           0.8         1.4           1.3         2.1           1.9         3.2           3.1         5.2           5.1         8.5 | (6 bar)         (10 bar)         (16 bar)           KN         KN         KN           0.3         0.5         0.8           0.5         0.8         1.4           0.8         1.4         2.2           1.3         2.1         3.4           1.9         3.2         5.1           3.1         5.2         8.3           5.1         8.5         13.7 | (6 bar)         (10 bar)         (16 bar)         (21 bar)           KN         KN         KN         KN           0.3         0.5         0.8         1.0           0.5         0.8         1.4         1.8           0.8         1.4         2.2         2.9           1.3         2.1         3.4         4.5           1.9         3.2         5.1         6.7           3.1         5.2         8.3         10.9           5.1         8.5         13.7         17.9 | (6 bar)         (10 bar)         (16 bar)         (21 bar)         (25 bar)           KN         KN         KN         KN           0.3         0.5         0.8         1.0         1.2           0.5         0.8         1.4         1.8         2.1           0.8         1.4         2.2         2.9         3.5           1.3         2.1         3.4         4.5         5.4           1.9         3.2         5.1         6.7         8.0           3.1         5.2         8.3         10.9         12.9           5.1         8.5         13.7         17.9         21.3 |

<sup>\*</sup> test pressure

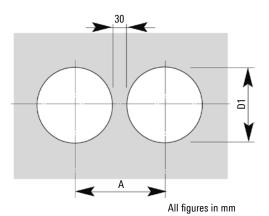



# **Entry into building**

Wall opening



The connector and/or the CASAFLEX pipe are not suitable for accommodating expansion of ongoing pipes. A fixed point clamp must be fitted for this reason (see worksheet CFL 4.515).

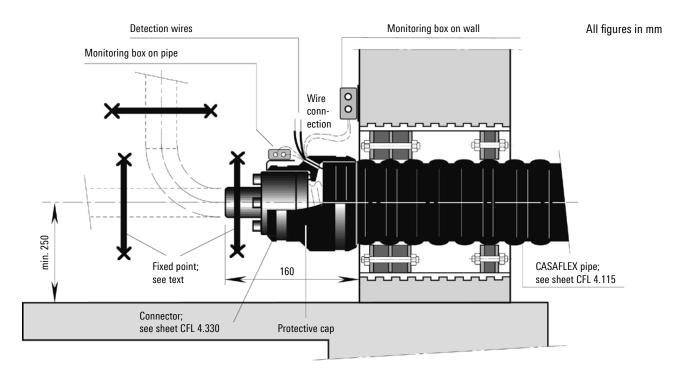

#### Wall opening



| AΙΙ | figures | in | mm |
|-----|---------|----|----|

| L min | H min                  |
|-------|------------------------|
| mm    | mm                     |
| 500   | 300                    |
| 500   | 300                    |
| 550   | 300                    |
| 600   | 350                    |
| 650   | 350                    |
| 700   | 400                    |
|       | mm 500 500 550 600 650 |

#### **Core bores**




| Outer casing | D1  | Α   |  |
|--------------|-----|-----|--|
| Ø D          |     |     |  |
| mm           | mm  | mm  |  |
| 91           | 200 | 230 |  |
| 111          | 220 | 250 |  |
| 126          | 240 | 270 |  |
| 142          | 260 | 290 |  |
| 162          | 280 | 310 |  |
| 202          | 320 | 350 |  |
|              |     |     |  |



# **Entry into building**

Core bore



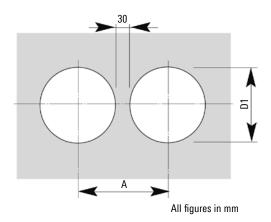
The connector and/or the CASAFLEX pipe are not suitable for accommodating expansion of ongoing pipes. A fixed point clamp must be fitted for this reason (see worksheet CFL 4.515).

#### **Core bores**

Perfect bores are required for installation. As hairline cracks may be present in the concrete or could be caused by processing, it is advisable to seal the entire length of the borehole wall with suitable sealant (such as AQUAGARD). Tightness can only be guaranteed if this recommendation is followed.

Seal set type A single-seal

1 x 40 mm, Shore hardness D 35


Seal set type C40 double-seal\*

2 x 40 mm, Shore hardness D 35

Liner pipe made of fiber cement, or core bore coated

\* Suitable for pressure from water up to 0.5 bar

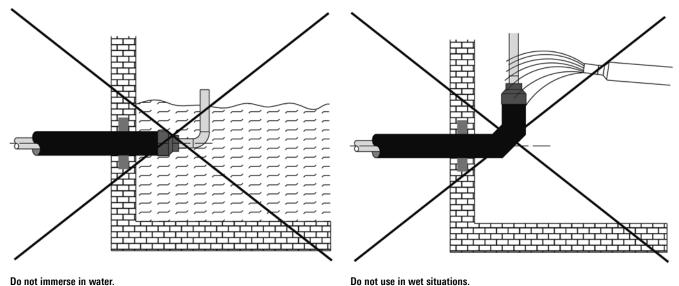
#### Core bores



| Outer casing<br>Ø D | D1  | A   |
|---------------------|-----|-----|
| mm                  | mm  | mm  |
| 91                  | 150 | 180 |
| 111                 | 200 | 230 |
| 126                 | 200 | 230 |
| 142                 | 200 | 230 |
| 162                 | 250 | 280 |
| 202                 | 300 | 330 |



## **Shaft structures**


Entry into building

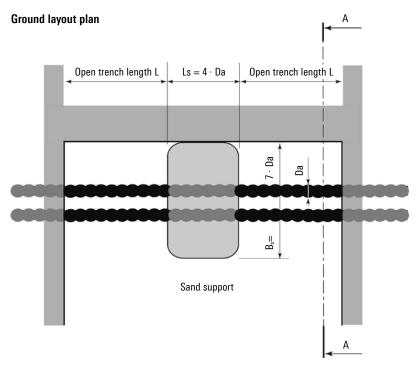
#### Planning and engineering of shaft structures

The construction and maintenance of shaft structures in local and district heating networks is usually very expensive and time-consuming. They must include inbound and outbound ventilation and must be built so that they are watertight; any surface water which penetrates should be removed as quickly as possible so as to prevent damage to the shaft installations and the heat insulation for the inbound pipes (insulated steel pipes and flexible district heating pipes).

Depending on local conditions, the pipe entries must be fitted with seals. For surface water which does not exert pressure, simple labyrinth seals are usually adequate. For groundwater an adjustable packing seal is generally required. As a rule, the pipe end seals are only designed to protect against water splashes. A design which is impermeable to surface water is also possible in principle, but flooding of lengthy duration, especially below operating temperature, should be avoided.

Due to these requirements, little use is made of shaft constructions nowadays. Instead, pre-insulated T-pieces and (if necessary) pre-insulated shut-off and drainage/venting fittings are used. This makes it possible to avoid the substantial costs of producing and maintaining shaft constructions and to increase the operational reliability of the system.



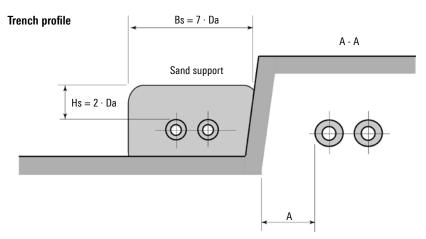

## **Construction work**

#### Open trench lengths

The static equilibrium of the CASAFLEX district heating pipe must be maintained during construction work; see the open trench lengths (L) stipulated in the table. If greater lengths have to be left unsupported, sand supports must be positioned at the intervals indicated. T-pieces must be separately fixed by means of sand supports.

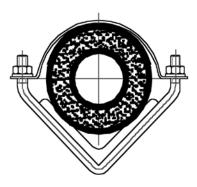
In case of open digging parallel with the CASAFLEX pipe route, distance (A) must be respected. Where other trenches are parallel to the CASAFLEX route, the distance A must be maintained.

| Туре   | L       | L        | L        | L        | L        | Α   |
|--------|---------|----------|----------|----------|----------|-----|
|        | (6 bar) | (10 bar) | (16 bar) | (21 bar) | (25 bar) |     |
|        | m       | m        | m        | m        | m        | m   |
| DN 20  | 6       | 4        | 3        | 2        | 2        | 0.5 |
| DN 25  | 6       | 4        | 3        | 2        | 2        | 0.5 |
| DN 32  | 6       | 4        | 3        | 2        | 2        | 0.5 |
| DN 40  | 5       | 4        | 3        | 2        | 2        | 0.5 |
| DN 50  | 5       | 4        | 3        | 2        | 2        | 0.5 |
| DN 65  | 5       | 4        | 3        | 2        | 2        | 0.6 |
| DN 80  | 2       | 4        | 3        | 2        | 2        | 0.6 |
| DN 100 | 5       | 4        | 3        | 2        | 2        | 0.6 |




Sand support dimensions:

 $Hs = 2 \times Da$ 


 $Bs = 7 \times Da$ 

Ls  $= 4 \times Da$ 





# Open installation



Special measures are required for open installation of CASAFLEX district heating pipes:

- Installation on a continuous mounting rail (steel angle profile, galvanized)
- Changes of direction must also be supported
- In a 90° bend secure with clamps and pressure distribution plates at specified intervals
- Clamps
- Limitation to PN 10
- Fix ends with anchor points
- Assistance with design engineering and planning from BRUGG

| CASAFLEX    | Angle steel  | Distance between clamps | Minimum<br>bending |  |
|-------------|--------------|-------------------------|--------------------|--|
| Туре        | (galvanized) |                         |                    |  |
| radius      |              |                         |                    |  |
|             | mm           | m                       | m                  |  |
| CFL 22/ 91  | 60 x 60 x 6  | 2                       | 0.8                |  |
| CFL 30/111  | 70 x 70 x 7  | 2                       | 1.0                |  |
| CFL 39/126  | 80 x 80 x 8  | 2                       | 1.2                |  |
| CFL 48/126  | 80 x 80 x 8  | 2                       | 1.2                |  |
| CFL 60/142  | 90 x 90 x 9  | 2                       | 1.3                |  |
| CFL 75/162  | 90 x 90 x 9  | 2                       | 1.8                |  |
| CFL 98/162  | 90 x 90 x 9  | 2                       | 1.8                |  |
| CFL 127/225 | 90 x 90 x 9  | 2                       | 2.0                |  |

